Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies.

Identifieur interne : 000862 ( Ncbi/Merge ); précédent : 000861; suivant : 000863

The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies.

Auteurs : Robert Wrase [Allemagne] ; Hannah Scott ; Rolf Hilgenfeld ; Guido Hansen

Source :

RBID : pubmed:21670246

Descripteurs français

English descriptors

Abstract

Proteases of the HtrA family are key factors dealing with folding stress in the periplasmatic compartment of prokaryotes. In Escherichia coli, the well-characterized HtrA family members DegS and DegP counteract the accumulation of unfolded outer-membrane proteins under stress conditions. Whereas DegS serves as a folding-stress sensor, DegP is a chaperone-protease facilitating refolding or degradation of defective outer-membrane proteins. Here, we report the 2.15-Å-resolution crystal structure of the second major chaperone-protease of the periplasm, DegQ from Legionella fallonii. DegQ assembles into large, cage-like 12-mers that form independently of unfolded substrate proteins. We provide evidence that 12-mer formation is essential for the degradation of substrate proteins but not for the chaperone activity of DegQ. In the current model for the regulation of periplasmatic chaperone-proteases, 6-meric assemblies represent important protease-resting states. However, DegQ is unable to form such 6-mers, suggesting divergent regulatory mechanisms for DegQ and DegP. To understand how the protease activity of DegQ is controlled, we probed its functional properties employing designed protein variants. Combining crystallographic, biochemical, and mutagenic data, we present a mechanistic model that suggests how protease activity of DegQ 12-mers is intrinsically regulated and how deleterious proteolysis by free DegQ 3-mers is prevented. Our study sheds light on a previously uncharacterized component of the prokaryotic stress-response system with implications for other members of the HtrA family.

DOI: 10.1073/pnas.1101084108
PubMed: 21670246

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21670246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies.</title>
<author>
<name sortKey="Wrase, Robert" sort="Wrase, Robert" uniqKey="Wrase R" first="Robert" last="Wrase">Robert Wrase</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck</wicri:regionArea>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scott, Hannah" sort="Scott, Hannah" uniqKey="Scott H" first="Hannah" last="Scott">Hannah Scott</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
<author>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21670246</idno>
<idno type="pmid">21670246</idno>
<idno type="doi">10.1073/pnas.1101084108</idno>
<idno type="wicri:Area/PubMed/Corpus">001E69</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E69</idno>
<idno type="wicri:Area/PubMed/Curation">001E69</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E69</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001D33</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001D33</idno>
<idno type="wicri:Area/Ncbi/Merge">000862</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies.</title>
<author>
<name sortKey="Wrase, Robert" sort="Wrase, Robert" uniqKey="Wrase R" first="Robert" last="Wrase">Robert Wrase</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck</wicri:regionArea>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scott, Hannah" sort="Scott, Hannah" uniqKey="Scott H" first="Hannah" last="Scott">Hannah Scott</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
<author>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Crystallography, X-Ray</term>
<term>Legionella (enzymology)</term>
<term>Models, Molecular</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cristallographie aux rayons X</term>
<term>Legionella (enzymologie)</term>
<term>Modèles moléculaires</term>
<term>Peptide hydrolases ()</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Protéines bactériennes ()</term>
<term>Protéines bactériennes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Legionella</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Legionella</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptide hydrolases</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cristallographie aux rayons X</term>
<term>Modèles moléculaires</term>
<term>Peptide hydrolases</term>
<term>Protéines bactériennes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Proteases of the HtrA family are key factors dealing with folding stress in the periplasmatic compartment of prokaryotes. In Escherichia coli, the well-characterized HtrA family members DegS and DegP counteract the accumulation of unfolded outer-membrane proteins under stress conditions. Whereas DegS serves as a folding-stress sensor, DegP is a chaperone-protease facilitating refolding or degradation of defective outer-membrane proteins. Here, we report the 2.15-Å-resolution crystal structure of the second major chaperone-protease of the periplasm, DegQ from Legionella fallonii. DegQ assembles into large, cage-like 12-mers that form independently of unfolded substrate proteins. We provide evidence that 12-mer formation is essential for the degradation of substrate proteins but not for the chaperone activity of DegQ. In the current model for the regulation of periplasmatic chaperone-proteases, 6-meric assemblies represent important protease-resting states. However, DegQ is unable to form such 6-mers, suggesting divergent regulatory mechanisms for DegQ and DegP. To understand how the protease activity of DegQ is controlled, we probed its functional properties employing designed protein variants. Combining crystallographic, biochemical, and mutagenic data, we present a mechanistic model that suggests how protease activity of DegQ 12-mers is intrinsically regulated and how deleterious proteolysis by free DegQ 3-mers is prevented. Our study sheds light on a previously uncharacterized component of the prokaryotic stress-response system with implications for other members of the HtrA family.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21670246</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies.</ArticleTitle>
<Pagination>
<MedlinePgn>10490-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1101084108</ELocationID>
<Abstract>
<AbstractText>Proteases of the HtrA family are key factors dealing with folding stress in the periplasmatic compartment of prokaryotes. In Escherichia coli, the well-characterized HtrA family members DegS and DegP counteract the accumulation of unfolded outer-membrane proteins under stress conditions. Whereas DegS serves as a folding-stress sensor, DegP is a chaperone-protease facilitating refolding or degradation of defective outer-membrane proteins. Here, we report the 2.15-Å-resolution crystal structure of the second major chaperone-protease of the periplasm, DegQ from Legionella fallonii. DegQ assembles into large, cage-like 12-mers that form independently of unfolded substrate proteins. We provide evidence that 12-mer formation is essential for the degradation of substrate proteins but not for the chaperone activity of DegQ. In the current model for the regulation of periplasmatic chaperone-proteases, 6-meric assemblies represent important protease-resting states. However, DegQ is unable to form such 6-mers, suggesting divergent regulatory mechanisms for DegQ and DegP. To understand how the protease activity of DegQ is controlled, we probed its functional properties employing designed protein variants. Combining crystallographic, biochemical, and mutagenic data, we present a mechanistic model that suggests how protease activity of DegQ 12-mers is intrinsically regulated and how deleterious proteolysis by free DegQ 3-mers is prevented. Our study sheds light on a previously uncharacterized component of the prokaryotic stress-response system with implications for other members of the HtrA family.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wrase</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scott</LastName>
<ForeName>Hannah</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hilgenfeld</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hansen</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>3PV2</AccessionNumber>
<AccessionNumber>3PV3</AccessionNumber>
<AccessionNumber>3PV4</AccessionNumber>
<AccessionNumber>3PV5</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007875" MajorTopicYN="N">Legionella</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21670246</ArticleId>
<ArticleId IdType="pii">1101084108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1101084108</ArticleId>
<ArticleId IdType="pmc">PMC3127897</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Jul;17(7):844-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18697939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 11;1694(1-3):121-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Aug;191(15):4705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2002 Jul;15(3):506-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1998;290:323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9534173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 30;97(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2009 Nov;160(9):704-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2009 Nov;160(9):660-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19695325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Feb;189(3):706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2005 May 31;38(3):266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15943900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Sep;49(6):1451-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12950913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Aug 15;16(16):2156-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):455-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Feb;178(4):1146-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8576051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2009 Oct 14;17(10):1411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19836340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 12;453(7197):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18496527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Oct;178(20):5925-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2004 May 7;3(1):4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Jun 28;85(7):1067-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8674113</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
<name sortKey="Scott, Hannah" sort="Scott, Hannah" uniqKey="Scott H" first="Hannah" last="Scott">Hannah Scott</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Wrase, Robert" sort="Wrase, Robert" uniqKey="Wrase R" first="Robert" last="Wrase">Robert Wrase</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000862 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000862 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:21670246
   |texte=   The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21670246" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021